Evaluating variable selection methods for diagnosis of myocardial infarction.

S. Dreiseitl, L. Ohno-Machado, S. Vinterbo

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

13 Zitate (Scopus)


This paper evaluates the variable selection performed by several machine-learning techniques on a myocardial infarction data set. The focus of this work is to determine which of 43 input variables are considered relevant for prediction of myocardial infarction. The algorithms investigated were logistic regression (with stepwise, forward, and backward selection), backpropagation for multilayer perceptrons (input relevance determination), Bayesian neural networks (automatic relevance determination), and rough sets. An independent method (self-organizing maps) was then used to evaluate and visualize the different subsets of predictor variables. Results show good agreement on some predictors, but also variability among different methods; only one variable was selected by all models.

Seiten (von - bis)246-250
FachzeitschriftProceedings / AMIA ... Annual Symposium. AMIA Symposium
PublikationsstatusVeröffentlicht - 1999
Extern publiziertJa


Untersuchen Sie die Forschungsthemen von „Evaluating variable selection methods for diagnosis of myocardial infarction.“. Zusammen bilden sie einen einzigartigen Fingerprint.