Empirical analysis of variance for genetic programming based symbolic regression

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

Genetic programming (GP) based symbolic regression is a stochastic, high-variance algorithm. Its sensitivity to changes in training data is a drawback for practical applications. In this work, we analyze empirically the variance of GP models on the PennML benchmarks. We measure the spread of model predictions when models are trained on slightly perturbed data. We compare the spread of models from two GP variants as well as linear, polynomial and random forest regression models. The results show that the spread of models from GP with local optimization is significantly higher than that of all other algorithms. As a side effect of our analysis, we provide evidence that the PennML benchmark contains two groups of instances (Friedman and real-world problem instances) for which GP performs significantly different.

OriginalspracheEnglisch
TitelGECCO 2021 Companion - Proceedings of the 2021 Genetic and Evolutionary Computation Conference Companion
Herausgeber (Verlag)Association for Computing Machinery, Inc
Seiten251-252
Seitenumfang2
ISBN (elektronisch)9781450383516
DOIs
PublikationsstatusVeröffentlicht - 7 Juli 2021
Veranstaltung2021 Genetic and Evolutionary Computation Conference, GECCO 2021 - Virtual, Online, Frankreich
Dauer: 10 Juli 202114 Juli 2021

Publikationsreihe

NameGECCO 2021 Companion - Proceedings of the 2021 Genetic and Evolutionary Computation Conference Companion

Konferenz

Konferenz2021 Genetic and Evolutionary Computation Conference, GECCO 2021
Land/GebietFrankreich
OrtVirtual, Online
Zeitraum10.07.202114.07.2021

Fingerprint

Untersuchen Sie die Forschungsthemen von „Empirical analysis of variance for genetic programming based symbolic regression“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren