Effects of Mutation Before and After Offspring Selection in Genetic Programming for Symbolic Regression

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

In evolutionary algorithms mutation operators increase the genetic diversity in the population. Mutations are undirected and have only a low probability to improve the quality of the manipulated solution. Offspring selection determines if a newly created solution is added to the next generation of the population. By definition, offspring selection is applied after mutation and the effects of mutation are directed and quality-driven. In this paper we propose an alternative variant of genetic programming with offspring selection where mutation is applied to increase genetic diversity after offspring selection. We compare the solution quality achieved by the original algorithm and the new algorithm when applied to a symbolic regression problem. We observe that solutions produced by the new variant have a smaller generalization error and conclude that the proposed variant is better for symbolic regression with linear scaling.
OriginalspracheEnglisch
Titel22th European Modeling and Simulation Symposium, EMSS 2010
Seiten37-42
Seitenumfang6
PublikationsstatusVeröffentlicht - 2010
Veranstaltung22nd European Modeling and Simulation Symposium EMSS 2010 - Fes, Marokko
Dauer: 13 Okt. 201015 Okt. 2010
http://emss2010.isaatc.ull.es

Publikationsreihe

Name22th European Modeling and Simulation Symposium, EMSS 2010

Konferenz

Konferenz22nd European Modeling and Simulation Symposium EMSS 2010
Land/GebietMarokko
OrtFes
Zeitraum13.10.201015.10.2010
Internetadresse

Fingerprint

Untersuchen Sie die Forschungsthemen von „Effects of Mutation Before and After Offspring Selection in Genetic Programming for Symbolic Regression“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren