TY - JOUR
T1 - Effect of deposition temperature and hydrogen as a process gas on mechanical properties and specific electrical resistivity of thick a-C:H obtained by means of PACVD
AU - Danninger, Simon
AU - Delfin, Francisco a.
AU - Schachinger, Manuel
AU - Forsich, Christian
AU - Heim, Daniel
AU - Rübig, Bernd
AU - Dipolt, Christian
AU - Müller, Thomas
N1 - Publisher Copyright:
© 2023 The Authors
PY - 2023/12/15
Y1 - 2023/12/15
N2 - DLC coatings are widely used for their protective properties such as high wear resistance, low friction coefficient as well as chemical inertness. However, their electrical resistance is usually very high, which limits their utilization in electrotechnical applications. To improve electrical conductivity, DLC films are typically doped with nitrogen or metals. This study, however, investigates the mechanical and electrical properties of un-doped, hydrogenated DLC films deposited using temperatures above 450 °C. To further enhance the coating's properties, hydrogen gas was added during deposition. The DLC coatings were produced by means of PA-CVD using a pulsed DC discharge. Temperatures of 450 °C, 500 °C and 550 °C were used to deposit a-C:H films on steel substrate. The process gas consisted of a mixture of argon and acetylene. Additionally, coatings were deposited with hydrogen added to the gas mixture. A silicon-based interlayer served as an electrical insulator between substrate and coating and was deposited with HMDSO as a precursor. To measure the specific electrical resistivity of the films, the van der Pauw method was performed. The mechanical properties of the coatings were determined through nanoindentation. Raman spectroscopy was performed to analyze the structure of the DLC coatings. The films showed a significant decrease in specific electrical resistivity with increasing deposition temperature. Values dropped to <10
4 μΩ cm at 550 °C, attaining levels close to graphite. Hardness and Young's modulus increased up to 147 % with rising deposition temperature. The addition of 18 % hydrogen gas during deposition resulted in at least 60 % further reduction in specific electrical resistivity, while also slightly raising coating hardness for deposition temperatures above 450 °C. With this new distinct deposition method, electrically conductive a-C:H coatings with improved mechanical properties can be produced only by increasing the deposition temperature and the utilization of hydrogen as process gas.
AB - DLC coatings are widely used for their protective properties such as high wear resistance, low friction coefficient as well as chemical inertness. However, their electrical resistance is usually very high, which limits their utilization in electrotechnical applications. To improve electrical conductivity, DLC films are typically doped with nitrogen or metals. This study, however, investigates the mechanical and electrical properties of un-doped, hydrogenated DLC films deposited using temperatures above 450 °C. To further enhance the coating's properties, hydrogen gas was added during deposition. The DLC coatings were produced by means of PA-CVD using a pulsed DC discharge. Temperatures of 450 °C, 500 °C and 550 °C were used to deposit a-C:H films on steel substrate. The process gas consisted of a mixture of argon and acetylene. Additionally, coatings were deposited with hydrogen added to the gas mixture. A silicon-based interlayer served as an electrical insulator between substrate and coating and was deposited with HMDSO as a precursor. To measure the specific electrical resistivity of the films, the van der Pauw method was performed. The mechanical properties of the coatings were determined through nanoindentation. Raman spectroscopy was performed to analyze the structure of the DLC coatings. The films showed a significant decrease in specific electrical resistivity with increasing deposition temperature. Values dropped to <10
4 μΩ cm at 550 °C, attaining levels close to graphite. Hardness and Young's modulus increased up to 147 % with rising deposition temperature. The addition of 18 % hydrogen gas during deposition resulted in at least 60 % further reduction in specific electrical resistivity, while also slightly raising coating hardness for deposition temperatures above 450 °C. With this new distinct deposition method, electrically conductive a-C:H coatings with improved mechanical properties can be produced only by increasing the deposition temperature and the utilization of hydrogen as process gas.
KW - DLC
KW - Deposition temperature
KW - Electrical conductivity
KW - PACVD
KW - Process gas
KW - a-C:H
UR - http://www.scopus.com/inward/record.url?scp=85174852885&partnerID=8YFLogxK
U2 - 10.1016/j.surfcoat.2023.130096
DO - 10.1016/j.surfcoat.2023.130096
M3 - Article
SN - 0257-8972
VL - 474
SP - 130096
JO - Surface and Coatings Technology
JF - Surface and Coatings Technology
M1 - 130096
ER -