Distributed Classification - A Scalable Approach to Semi Supervised Machine Learning

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

Abstract

Fitting real world data into a model for classification, is a challenging task. Modern approaches to classification are often resource intensive and may become bottlenecks. A microservice architecture that allows maintaining a model of real world data, and adding new information as it becomes available is presented in this paper. Updates to the model are handled via different microservices. The architecture and connected workflows are demonstrated in a use case of classifying text data in a taxonomy represented by a directed acyclic graph (DAG). The presented architecture removes the classification bottleneck, as multiple data points can be added independent of each other, and reading access to the model is not restricted. Additional microservices also enable a manual intervention to update the model.

OriginalspracheEnglisch
Titel34th European Modeling and Simulation Symposium, EMSS 2022
Redakteure/-innenMichael Affenzeller, Agostino G. Bruzzone, Emilio Jimenez, Francesco Longo, Antonella Petrillo
Herausgeber (Verlag)DIME UNIVERSITY OF GENOA
ISBN (elektronisch)9788885741737
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung34th European Modeling and Simulation Symposium, EMSS 2022 - Rome, Italien
Dauer: 19 Sep. 202221 Sep. 2022

Publikationsreihe

Name34th European Modeling and Simulation Symposium, EMSS 2022

Konferenz

Konferenz34th European Modeling and Simulation Symposium, EMSS 2022
Land/GebietItalien
OrtRome
Zeitraum19.09.202221.09.2022

Fingerprint

Untersuchen Sie die Forschungsthemen von „Distributed Classification - A Scalable Approach to Semi Supervised Machine Learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren