Discrete real-world problems in a black-box optimization benchmark

Sebastian Josef Raggl, Andreas Beham, Viktoria Hauder, Stefan Wagner, Michael Affenzeller

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

Combinatorial optimization problems come in a wide variety of types but five common problem components can be identified. This categorization can aid the selection of interesting and diverse set of problems for inclusion in the combinatorial black-box problem benchmark. We suggest two real-world problems for inclusion into the benchmark. One is a transport-lot building problem and the other one is the clustered generalized quadratic assignment problem. We look into designing an interface for discrete black-box problems that can accommodate problems belonging to all of the described categories as well real-world problems that often feature multiple problem components. We describe three different interfaces for black-box problems, the first using a general encoding for all types of problems the second one using specialized encodings per problem type and the last one describes problems in terms of the available operators. We compare the strengths and weaknesses of the three designs.

OriginalspracheEnglisch
TitelGECCO 2018 Companion - Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion
Herausgeber (Verlag)Association for Computing Machinery, Inc
Seiten1745-1752
Seitenumfang8
ISBN (elektronisch)9781450357647
DOIs
PublikationsstatusVeröffentlicht - 6 Juli 2018
Veranstaltung2018 Genetic and Evolutionary Computation Conference, GECCO 2018 - Kyoto, Japan
Dauer: 15 Juli 201819 Juli 2018

Publikationsreihe

NameGECCO 2018 Companion - Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion

Konferenz

Konferenz2018 Genetic and Evolutionary Computation Conference, GECCO 2018
Land/GebietJapan
OrtKyoto
Zeitraum15.07.201819.07.2018

Fingerprint

Untersuchen Sie die Forschungsthemen von „Discrete real-world problems in a black-box optimization benchmark“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren