Data-based identification of prediction models for glucose

J. Manuel Velasco, Stephan Winkler, J. Ignacio Hidalgo, Oscar Garnica, Juan Lanchares, J. Manuel Colmenar, Esther Maqueda, Marta Botella, Jose Antonio Rubio

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

Diabetes mellitus is a disease that affects to hundreds of million of people worldwide. Maintaining a good control of the disease is critical to avoid severe long-term complications. One of the main problems that arise in the (semi) automatic control of diabetes, is to get a model explaining how glycemia (glucose levels in blood) varies with insulin, food intakes and other factors, fitting the characteristics of each individual or patient. In this paper we compare genetic programming techniques with a set of clsssical identification techniques: classical simple exponential smoothing, Holt's smoothing (linear, exponential and damped), classical Holt and Winters methods and auto regressive integrated moving average modelling. We consider predictions horizons of 30, 60, 90 and 120 minutes. Experimental results shows the difficulty of predicting glucose values for more than 60 minutes and the necessity of adapt GP techniques for those dynamic enviroments.

OriginalspracheEnglisch
TitelGECCO 2015 - Companion Publication of the 2015 Genetic and Evolutionary Computation Conference
Redakteure/-innenSara Silva
Herausgeber (Verlag)Association for Computing Machinery, Inc
Seiten1327-1334
Seitenumfang8
ISBN (elektronisch)9781450334884
DOIs
PublikationsstatusVeröffentlicht - 11 Juli 2015
Veranstaltung17th Genetic and Evolutionary Computation Conference, GECCO 2015 - Madrid, Spanien
Dauer: 11 Juli 201515 Juli 2015

Publikationsreihe

NameGECCO 2015 - Companion Publication of the 2015 Genetic and Evolutionary Computation Conference

Konferenz

Konferenz17th Genetic and Evolutionary Computation Conference, GECCO 2015
Land/GebietSpanien
OrtMadrid
Zeitraum11.07.201515.07.2015

Fingerprint

Untersuchen Sie die Forschungsthemen von „Data-based identification of prediction models for glucose“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren