Confidence-Based Ensemble Modeling in Medical Data Mining

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

A recent approach for improving the accuracy of ensemble models is confidence-based modeling. Thereby, confidence measures, which indicate an ensemble prediction's reliability, are used for identifying unreliable predictions in order to improve a model's accuracy among reliable predictions. However, despite promising results in previous work, no comparable results for public benchmark data sets have been published yet. This paper applies confidence-based modeling with GP-based symbolic binary classification ensembles on a set of medical benchmark problems to make statements about the concept's general applicability. Moreover, extensions for multiclass classification problems are proposed.

OriginalspracheEnglisch
TitelGECCO 2018 Companion - Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion
Herausgeber (Verlag)ACM Press
Seiten163-164
Seitenumfang2
ISBN (elektronisch)9781450357647
DOIs
PublikationsstatusVeröffentlicht - 6 Juli 2018
VeranstaltungGenetic and Evolutionary Computation Conference (GECCO 2018) - Kyoto, Japan, Japan
Dauer: 15 Juli 201819 Juli 2018
http://gecco-2018.sigevo.org/

Publikationsreihe

NameGECCO 2018 Companion - Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion

Konferenz

KonferenzGenetic and Evolutionary Computation Conference (GECCO 2018)
Land/GebietJapan
OrtKyoto, Japan
Zeitraum15.07.201819.07.2018
Internetadresse

Fingerprint

Untersuchen Sie die Forschungsthemen von „Confidence-Based Ensemble Modeling in Medical Data Mining“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren