Abstract
A recent approach for improving the accuracy of ensemble models is confidence-based modeling. Thereby, confidence measures, which indicate an ensemble prediction's reliability, are used for identifying unreliable predictions in order to improve a model's accuracy among reliable predictions. However, despite promising results in previous work, no comparable results for public benchmark data sets have been published yet. This paper applies confidence-based modeling with GP-based symbolic binary classification ensembles on a set of medical benchmark problems to make statements about the concept's general applicability. Moreover, extensions for multiclass classification problems are proposed.
Originalsprache | Englisch |
---|---|
Titel | GECCO 2018 Companion - Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion |
Herausgeber (Verlag) | ACM Press |
Seiten | 163-164 |
Seitenumfang | 2 |
ISBN (elektronisch) | 9781450357647 |
DOIs | |
Publikationsstatus | Veröffentlicht - 6 Juli 2018 |
Veranstaltung | Genetic and Evolutionary Computation Conference (GECCO 2018) - Kyoto, Japan, Japan Dauer: 15 Juli 2018 → 19 Juli 2018 http://gecco-2018.sigevo.org/ |
Publikationsreihe
Name | GECCO 2018 Companion - Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion |
---|
Konferenz
Konferenz | Genetic and Evolutionary Computation Conference (GECCO 2018) |
---|---|
Land/Gebiet | Japan |
Ort | Kyoto, Japan |
Zeitraum | 15.07.2018 → 19.07.2018 |
Internetadresse |