Comparison of Community Detection Algorithms for Reducing Variant Diversity in Production

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

Abstract

In production planning and control, discrete-event simulation (DES) is commonly used to address optimization challenges. DES using simgen generally begins with data preprocessing, parameterization, and experiment design. However, due to the complexity of manufacturing environments, DES models require careful parameterization, with empirical experiments designed to ensure efficient execution. This parameterization involves optimizing parameter settings for different materials based on routing, bill-of-materials complexity, and other production process-related features. To achieve optimized parameterization within expected timeframes, reducing variant diversity to eliminate redundant materials is necessary by using data-driven approaches. In this study, to identify representative materials, a network-based approach with five community-detection algorithms is compared for their efficiency in execution time and efficient module detection by constructing bipartite networks of material and routing features for identifying similar material groups and representative materials. The results show that communities and subcommunities identify representative materials by significantly reducing the initial number of materials with a faster approach that can be used for DES parameterization.

OriginalspracheEnglisch
TitelAdvances in Production Management Systems. Production Management Systems for Volatile, Uncertain, Complex, and Ambiguous Environments - 43rd IFIP WG 5.7 International Conference, APMS 2024, Proceedings
Redakteure/-innenMatthias Thürer, Ralph Riedel, Gregor von Cieminski, David Romero
Herausgeber (Verlag)Springer
Seiten412-427
Seitenumfang16
ISBN (Print)9783031716362
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung43rd IFIP WG 5.7 International Conference on Advances in Production Management Systems, APMS 2024 - Chemnitz, Deutschland
Dauer: 8 Sep. 202412 Sep. 2024

Publikationsreihe

NameIFIP Advances in Information and Communication Technology
Band732 IFIP
ISSN (Print)1868-4238
ISSN (elektronisch)1868-422X

Konferenz

Konferenz43rd IFIP WG 5.7 International Conference on Advances in Production Management Systems, APMS 2024
Land/GebietDeutschland
OrtChemnitz
Zeitraum08.09.202412.09.2024

Fingerprint

Untersuchen Sie die Forschungsthemen von „Comparison of Community Detection Algorithms for Reducing Variant Diversity in Production“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren