Abstract
In this work we present a comparison of various machine learning algorithms with the objective of detecting concept drifts in data streams characteristical for condition monitoring of industrial production plants. Although there is a fair number of contributions employing machine learning algorithms in related fields such as traditional time series forecasting or concept drift learning, data sets with sensor streams from a production plant are rarely covered. This work aims at shedding some light on the matter of how efficient the depicted algorithms perform on concept drift detection to pave the way for Predictive Maintenance (PdM) and which intermediate data processing steps therefore might be beneficial.
Originalsprache | Englisch |
---|---|
Titel | 30th European Modeling and Simulation Symposium, EMSS 2018 |
Redakteure/-innen | Yuri Merkuryev, Miquel Angel Piera, Francesco Longo, Agostino G. Bruzzone, Michael Affenzeller, Emilio Jimenez |
Herausgeber (Verlag) | DIME UNIVERSITY OF GENOA |
Seiten | 115-122 |
Seitenumfang | 8 |
ISBN (elektronisch) | 9788885741065 |
ISBN (Print) | 978-88-85741-03-4 |
Publikationsstatus | Veröffentlicht - 2018 |
Veranstaltung | The 30th European Modeling & Simulation Symposium EMSS 2018 - Budapest, Hungary, Ungarn Dauer: 17 Sep. 2018 → 19 Sep. 2018 http://www.msc-les.org/conf/emss2018/index.html |
Publikationsreihe
Name | 30th European Modeling and Simulation Symposium, EMSS 2018 |
---|
Konferenz
Konferenz | The 30th European Modeling & Simulation Symposium EMSS 2018 |
---|---|
Land/Gebiet | Ungarn |
Ort | Budapest, Hungary |
Zeitraum | 17.09.2018 → 19.09.2018 |
Internetadresse |
Schlagwörter
- Machine Learning
- Predictive Maintenance
- Concept Drift Detection
- Time Series Regression