Comparative Evaluation Of Nonlinear Identification Approaches

Märzinger Christian, Andreas Schrempf, Luigi Del Re, Grünbacher Engelbert

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

Abstract

Design of data based models for nonlinear systems using universal approximators has become a standard issue for which several tool boxes exist. The validation of such models is usually done using data of the same range and distribution as the identification data. This tends to hide the fact that the choice of the basis function used for the approximation is decisive in terms of model quality, and in particular of its extrapolation qualities. To this end, this paper compares a subspace identification procedure for a class of nonlinear systems with standard neural networks. As the results shown confirm, the subspace identification procedure in its simple form is not able to yield consistent estimates, but after a suitable robustification proves clearly superior to the ANN both in terms of performance (in terms of VAF) and of complexity (in terms of the number of parameters).
OriginalspracheEnglisch
TitelProceedings of the Vienna Conference on Mathematical Modelling
Seitenumfang10
PublikationsstatusVeröffentlicht - 2015
Veranstaltung8th Vienna Conference on Mathematical Modelling - Wien, Österreich
Dauer: 18 Feb 201520 Feb 2015
http://www.mathmod.at

Konferenz

Konferenz8th Vienna Conference on Mathematical Modelling
LandÖsterreich
OrtWien
Zeitraum18.02.201520.02.2015
Internetadresse

Schlagwörter

  • subspace identification
  • state-affine systems

Fingerprint Untersuchen Sie die Forschungsthemen von „Comparative Evaluation Of Nonlinear Identification Approaches“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren