Co-Immobilization of Proteins and DNA Origami Nanoplates to Produce High-Contrast Biomolecular Nanoarrays

Roland Hager, Jonathan R. Burns, Martyna J. Grydlik, Alma Halilovic, Thomas Haselgrübler, Friedrich Schäffler, Stefan Howorka

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

7 Zitate (Scopus)

Abstract

The biofunctionalization of nanopatterned surfaces with DNA origami nanostructures is an important topic in nanobiotechnology. An unexplored challenge is, however, to co-immobilize proteins with DNA origami at pre-determined substrate sites in high contrast relative to the nontarget areas. The immobilization should, in addition, preferably be achieved on a transparent substrate to allow ultrasensitive optical detection. If successful, specific co-binding would be a step towards stoichiometrically defined arrays with few to individual protein molecules per site. Here, we successfully immobilize with high specificity positively charged avidin proteins and negatively charged DNA origami nanoplates on 100 nm-wide carbon nanoislands while suppressing undesired adsorption to surrounding nontarget areas. The arrays on glass slides achieve unprecedented selectivity factors of up to 4000 and allow ultrasensitive fluorescence read-out. The co-immobilization onto the nanoislands leads to layered biomolecular architectures, which are functional because bound DNA origami influences the number of capturing sites on the nanopatches for other proteins. The novel hybrid DNA origami-protein nanoarrays allow the fabrication of versatile research platforms for applications in biosensing, biophysics, and cell biology, and, in addition, represent an important step towards single-molecule protein arrays.

OriginalspracheEnglisch
Seiten (von - bis)2877-2884
Seitenumfang8
FachzeitschriftSmall
Jahrgang12
Ausgabenummer21
DOIs
PublikationsstatusVeröffentlicht - 1 Juni 2016
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Co-Immobilization of Proteins and DNA Origami Nanoplates to Produce High-Contrast Biomolecular Nanoarrays“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren