Clustering Search and Variable Mesh Algorithms for continuous optimization

Yasel Josè Costa Salas

Publikation: Beitrag in FachzeitschriftArtikel

4 Zitate (Scopus)

Abstract

The hybridization of population-based meta-heuristics and local search strategies is an effective algorithmic proposal for solving complex continuous optimization problems. Such hybridization becomes much more effective when the local search heuristics are applied in the most promising areas of the solution space. This paper presents a hybrid method based on Clustering Search (CS) to solve continuous optimization problems. The CS divides the search space in clusters, which are composed of solutions generated by a population meta-heuristic, called Variable Mesh Optimization. Each cluster is explored further with local search procedures. Computational results considering a benchmark of multimodal continuous functions are presented.

OriginalspracheEnglisch
Seiten (von - bis)789-795
Seitenumfang7
FachzeitschriftExpert Systems with Applications
Jahrgang42
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - 1 Feb 2015

Fingerprint Untersuchen Sie die Forschungsthemen von „Clustering Search and Variable Mesh Algorithms for continuous optimization“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren