Building knowledge in a complex preterm birth problem domain.

L. Goodwin, S. Maher, L. Ohno-Machado, M. A. Iannacchione, P. Crockett, S. Dreiseitl, S. Vinterbo, W. Hammond

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

2 Zitate (Scopus)

Abstract

Data mining methods used a racially diverse sample (n = 19,970) of pregnant women and 1,622 variables that were collected in Duke's TMR electronic patient record over a 10-year period. Different statistical and data mining methods were similar when compared using receiver operating characteristic (ROC) curves. Best results found that seven demographic variables yielded .72 and addition of hundreds of other clinical variables added only .03 to the area under the curve (AUC). Similar results across methods suggest that results were data-driven and not method-dependent, and that demographic variables may offer a small set of parsimonious variables with predictive accuracy in a racially diverse population. Work to determine relevant variables for improved predictive accuracy is ongoing.

OriginalspracheEnglisch
Seiten (von - bis)305-309
Seitenumfang5
FachzeitschriftProceedings / AMIA ... Annual Symposium. AMIA Symposium
PublikationsstatusVeröffentlicht - 2000
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Building knowledge in a complex preterm birth problem domain.“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren