Big data landscapes - improving the visualization of machine learning-based clustering algorithms.

Dietrich Kammer, Mandy Keck, Thomas Gründer, Rainer Groh

Publikation: KonferenzbeitragPapierBegutachtung

4 Zitate (Scopus)

Abstract

With the internet, massively heterogeneous data sources need to be understood and classified to provide suitable services to users such as content observation, data exploration, e-commerce, or adaptive learning environments. The key to providing these services is applying machine learning (ML) in order to generate structures via clustering and classification. Due to the intricate processes involved in ML, visual tools are needed to support designing and evaluating the ML pipelines. In this contribution, we propose a comprehensive tool that facilitates the analysis and design of ML-based clustering algorithms using multiple visualization features such as semantic zoom, glyphs, and histograms.

OriginalspracheEnglisch
Seiten66:1-66:3
DOIs
PublikationsstatusVeröffentlicht - 29 Mai 2018
Extern publiziertJa
VeranstaltungAVI 2018 – International Working Conference on Advanced Visual Interfaces - Grosseto, Italien
Dauer: 29 Mai 20181 Juni 2018

Konferenz

KonferenzAVI 2018 – International Working Conference on Advanced Visual Interfaces
Land/GebietItalien
OrtGrosseto
Zeitraum29.05.201801.06.2018

Fingerprint

Untersuchen Sie die Forschungsthemen von „Big data landscapes - improving the visualization of machine learning-based clustering algorithms.“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren