Abstract

Micropatterning in living cells is used for the analysis of protein-protein interactions. The quantitative analysis of images produced within this process is time-consuming and non-trivial task. For the simplification and speedup of such analyses, we describe a method for fully automated analysis of micro-patterned cells in fluorescence microscopy images. An approach based on an evolution strategy allows the grid extraction of the assays to estimate the pattern on the cells. We outline a workflow for the segmentation of these patterned cells based on a Unet. We also show the efficiency of different data augmentations applied to different patterning setups. A Dice score of 0.89 with 3 µm patterns and 0.79 with 1 µm patterns could be achieved. As we demonstrate in this study, we can provide thorough micropatterning studies, by automating the cell segmentation process.

OriginalspracheEnglisch
TitelBiomedical Engineering Systems and Technologies - 15th International Joint Conference, BIOSTEC 2022, Revised Selected Papers
Redakteure/-innenAna Cecília A. Roque, Denis Gracanin, Ronny Lorenz, Athanasios Tsanas, Nathalie Bier, Ana Fred, Hugo Gamboa
Herausgeber (Verlag)Springer
Seiten34-52
Seitenumfang19
ISBN (Print)9783031388538
DOIs
PublikationsstatusVeröffentlicht - 2023
VeranstaltungProceedings of the 15th International Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2022 - Virtual, Online
Dauer: 9 Feb. 202211 Feb. 2022

Publikationsreihe

NameCommunications in Computer and Information Science
Band1814 CCIS
ISSN (Print)1865-0929
ISSN (elektronisch)1865-0937

Konferenz

KonferenzProceedings of the 15th International Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2022
OrtVirtual, Online
Zeitraum09.02.202211.02.2022

Fingerprint

Untersuchen Sie die Forschungsthemen von „Automated Segmentation of Patterned Cells in Micropatterning Microscopy Images“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren