Automated domain-specific feature selection for classificationbased segmentation of tomographic medical image data

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

Classification-based segmentation is an approach to establish generic analysis of medical image data. Significant feature sets covering different characteristics of regions to segment allow for robust discrimination of topologically defined classes. In this work a method for automated domain-specific feature selection to achieve a higher level of predictability is presented, incorporating multivariate feature analysis. For calculation of the probability density function, different approaches, like histogram analysis, enumeration of the entire feature space or umbrella Monte Carlo Integration are investigated. Furthermore, meta features calculated on entire classification results rather than on particular regions are introduced. Predictability of both, single local and meta features, is evaluated for different medical datasets as well for simulated intensity volumes, allowing testing and evaluating specific classification problems. The automated feature selection proofs to be accurate for classification-based segmentation utilizing well-known machine learning approaches.

OriginalspracheEnglisch
Titel3rd International Workshop on Innovative Simulation for Health Care, IWISH 2014
Redakteure/-innenFrancesco Longo, Marco Frascio, Yury Merkuryev, Vera Novak, Agostino G. Bruzzone
Herausgeber (Verlag)DIME UNIVERSITY OF GENOA
Seiten26-35
Seitenumfang10
ISBN (elektronisch)9788897999379
PublikationsstatusVeröffentlicht - 2014
Veranstaltung3rd International Workshop on Innovative Simulation for Health Care, IWISH 2014 - Bordeaux, Frankreich
Dauer: 10 Sep. 201412 Sep. 2014

Publikationsreihe

Name3rd International Workshop on Innovative Simulation for Health Care, IWISH 2014

Konferenz

Konferenz3rd International Workshop on Innovative Simulation for Health Care, IWISH 2014
Land/GebietFrankreich
OrtBordeaux
Zeitraum10.09.201412.09.2014

Fingerprint

Untersuchen Sie die Forschungsthemen von „Automated domain-specific feature selection for classificationbased segmentation of tomographic medical image data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren