Applying Layer-Wise Relevance Propagation on U-Net Architectures

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

Abstract

For safety critical applications, it is still a challenge to use AI and fulfill all regulatory requirements. Medicine/healthcare and transportation are two fields where regulatory requirements are of fundamental importance. A wrong decision can lead to serious hazards or even deaths. In these fields, semantic segmentation is often utilized to extract features. Especially U-Net architectures are used. This paper shows how to apply layer-wise relevance propagation (LRP) to a trained U-Net architecture. We achieve an efficient explanation of a segmentation by back-propagating the whole resulting image. To tackle the non-linear results of the LRP, we introduce a threshold mechanism in combination with a logarithmic transfer function to preprocess the data for visualization. We demonstrate our method on three use cases: the segmentation of a fiber-reinforced polymer in the field of non-destructive testing, the segmentation of pedestrians in an automotive application, and a lung segmentation example from the medical domain.

OriginalspracheEnglisch
TitelPattern Recognition - 27th International Conference, ICPR 2024, Proceedings
Redakteure/-innenApostolos Antonacopoulos, Subhasis Chaudhuri, Rama Chellappa, Cheng-Lin Liu, Saumik Bhattacharya, Umapada Pal
Herausgeber (Verlag)Springer
Seiten106-121
Seitenumfang16
ISBN (Print)9783031781971
DOIs
PublikationsstatusVeröffentlicht - 2025
Veranstaltung27th International Conference on Pattern Recognition, ICPR 2024 - Kolkata, Indien
Dauer: 1 Dez. 20245 Dez. 2024

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band15312 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz27th International Conference on Pattern Recognition, ICPR 2024
Land/GebietIndien
OrtKolkata
Zeitraum01.12.202405.12.2024

Fingerprint

Untersuchen Sie die Forschungsthemen von „Applying Layer-Wise Relevance Propagation on U-Net Architectures“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren