Abstract
The logarithmic capacity (also called Chebyshev constant or transfinite diameter) of two real intervals [−1, α] ∪ [β, 1] has been given explicitly with the help of Jacobi's elliptic and theta functions already by Achieser in 1930. By proving several inequalities for these elliptic and theta functions, an upper bound for the logarithmic capacity in terms of elementary functions of α and β is derived.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 65-75 |
Seitenumfang | 11 |
Fachzeitschrift | COMPLEX VARIABLES AND ELLIPTIC EQUATIONS |
Jahrgang | 53 |
Ausgabenummer | 1 |
DOIs | |
Publikationsstatus | Veröffentlicht - Jän. 2008 |