An integrated clustering and classification approach for the analysis of tumor patient data

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Standard patient parameters, tumor markers, and tumor diagnosis records are used for identifying prediction models for tumor markers as well as cancer diagnosis predictions. In this paper we present a hybrid clustering and classification approach that first identifies data clusters (using standard patient data and tumor markers) and then learns prediction models on the basis of these data clusters. The so formed clusters are analyzed and their homogeneity is calculated; the models learned on the basis of these clusters are tested and compared to each other with respect to classification accuracy and variable impacts.

OriginalspracheEnglisch
TitelComputer Aided Systems Theory, EUROCAST 2013 - 14th International Conference, Revised Selected Papers
Herausgeber (Verlag)Springer
Seiten388-395
Seitenumfang8
AuflagePART 1
ISBN (Print)978-3-642-53855-1
DOIs
PublikationsstatusVeröffentlicht - 2013
Veranstaltung14th International Conference on Computer Aided Systems Theory, Eurocast 2013 - Las Palmas de Gran Canaria, Spanien
Dauer: 10 Feb. 201315 Feb. 2013

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NummerPART 1
Band8111 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz14th International Conference on Computer Aided Systems Theory, Eurocast 2013
Land/GebietSpanien
OrtLas Palmas de Gran Canaria
Zeitraum10.02.201315.02.2013

Fingerprint

Untersuchen Sie die Forschungsthemen von „An integrated clustering and classification approach for the analysis of tumor patient data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren