An application of probabilistic collocation method in wind farms modelling and power system simulation

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

6 Zitate (Scopus)

Abstract

In this paper Probabilistic Collocation Method (PCM) is introduced to solve a stochastic model representing wind farms in South Australia (SA). The model is based upon historical acquisition of wind source data, and considering the spatial correlation of wind speeds at neighboring wind farms. This correlation is used to reduce the number of uncertain parameters of the model, and then reducing the cost of PCM computation. In addition, fuzzy logic optimization is applied to PCM to improve the accuracy of the model output. The paper concludes with presentation of an aggregated DC load flow model of SA that is used as an example to compare the computation efficiency of the PCM and traditional Monte Carlo (MC) simulation method.

OriginalspracheEnglisch
Titel2016 IEEE Innovative Smart Grid Technologies - Asia, ISGT-Asia 2016
Herausgeber (Verlag)IEEE Computer Society
Seiten681-686
Seitenumfang6
ISBN (elektronisch)9781509043033
DOIs
PublikationsstatusVeröffentlicht - 22 Dez. 2016
Extern publiziertJa
Veranstaltung2016 IEEE Innovative Smart Grid Technologies - Asia, ISGT-Asia 2016 - Melbourne, Australien
Dauer: 28 Nov. 20161 Dez. 2016

Publikationsreihe

NameIEEE PES Innovative Smart Grid Technologies Conference Europe

Konferenz

Konferenz2016 IEEE Innovative Smart Grid Technologies - Asia, ISGT-Asia 2016
Land/GebietAustralien
OrtMelbourne
Zeitraum28.11.201601.12.2016

Fingerprint

Untersuchen Sie die Forschungsthemen von „An application of probabilistic collocation method in wind farms modelling and power system simulation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren