An adaptive machine learning methodology to determine manufacturing process parameters for each part

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

Abstract

The identification of appropriate manufacturing process parameters typically relies on rule-based schemes, expertise, and domain knowledge of highly skilled workers. Usually, the parameter settings remain the same for each part in an individual production lot once an acceptable quality is reached. Each part, however, has slightly different properties and part-specific parameter settings have the opportunity to increase quality and reduce scrap. We propose a simple linear regression model to identify process parameters based on experimental data and extend that model with ideas from time series analysis to achieve highly-accurate, part-specific parameter settings in a real-world manufacturing use case. We show the usefulness of exploiting the (autocorrelated) structure of regression residuals to improve the predictive performance of regression models in manufacturing environments.

OriginalspracheEnglisch
Seiten (von - bis)764-771
Seitenumfang8
FachzeitschriftProcedia Computer Science
Jahrgang180
DOIs
PublikationsstatusVeröffentlicht - 2021
Veranstaltung2nd International Conference on Industry 4.0 and Smart Manufacturing, ISM 2020 - Virtual, Online, Österreich
Dauer: 23 Nov 202025 Nov 2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „An adaptive machine learning methodology to determine manufacturing process parameters for each part“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren