Age-Layer-Population-Structure with Self-adaptation in Optimization

Kaifeng Yang*, Bernhard Werth, Michael Affenzeller

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

Abstract

Dynamic optimization problems are a class of optimization problems where the objective function, constraints, or both can change over time. In this work, we address the dynamic travelling salesman problem (TSP) by using the age-layered population structure (ALPS). To enhance different layer’s behaviour, we introduce the self-adaptation strategies to adjust the mutation and crossover rate in each layers, which are stationary in the conventional ALPS. The proposed strategies are compared with the stationary strategy over 7 different dynamic TSPs. The experimental results shows that the proposed strategy, convex strategy, yields much better results than the stationary strategy on complex problems.

OriginalspracheEnglisch
TitelComputer Aided Systems Theory – EUROCAST 2024 - 19th International Conference, 2024, Revised Selected Papers
Redakteure/-innenAlexis Quesada-Arencibia, Michael Affenzeller, Roberto Moreno-Díaz
Herausgeber (Verlag)Springer
Seiten3-11
Seitenumfang9
ISBN (Print)9783031838873
DOIs
PublikationsstatusVeröffentlicht - 2025
Veranstaltung19th International Conference on Computer Aided Systems Theory, EUROCAST 2024 - Las Palmas de Canaria, Spanien
Dauer: 25 Feb. 20241 März 2024

Publikationsreihe

NameLecture Notes in Computer Science
Band15174 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz19th International Conference on Computer Aided Systems Theory, EUROCAST 2024
Land/GebietSpanien
OrtLas Palmas de Canaria
Zeitraum25.02.202401.03.2024

Fingerprint

Untersuchen Sie die Forschungsthemen von „Age-Layer-Population-Structure with Self-adaptation in Optimization“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren