A new approach to target region based multiobjective evolutionary algorithms

Yali Wang, Longmei Li, Kaifeng Yang, Michael T.M. Emmerich

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

12 Zitate (Scopus)

Abstract

In this paper, a target region based multiobjective evolutionary algorithm framework is proposed to incorporate preference into the optimization process. It aims at finding a more fine-grained resolution of a target region without exploring the whole set of Pareto optimal solutions. It can guide the search towards the regions on the Pareto Front which are of real interest to the decision maker. The algorithm framework has been combined with SMS-EMOA, R2-EMOA, NSGA-II to form three target region based multiobjective evolutionary algorithms: T-SMS-EMOA, T-R2-EMOA and T-NSGA-II. In these algorithms, three ranking criteria are applied to achieve a well-converged and well-distributed set of Pareto optimal solutions in the target region. The three criteria are: 1. Non-dominated sorting; 2. indicators (hypervolume or R2 indicator) or crowding distance in the new coordinate space (i.e. target region) after coordinate transformation; 3. the Chebyshev distance to the target region. Rectangular and spherical target regions have been tested on some benchmark problems, including continuous problems and discrete problems. Experimental results show that new algorithms can handle the preference information very well and find an adequate set of Pareto-optimal solutions in the preferred regions quickly. Moreover, the proposed algorithms have been enhanced to support multiple target regions and preference information based on a target point or multiple target points. Some results of enhanced algorithms are presented.

OriginalspracheEnglisch
Titel2017 IEEE Congress on Evolutionary Computation, CEC 2017 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten1757-1764
Seitenumfang8
ISBN (elektronisch)9781509046010
DOIs
PublikationsstatusVeröffentlicht - 5 Juli 2017
Veranstaltung2017 IEEE Congress on Evolutionary Computation, CEC 2017 - Donostia-San Sebastian, Spanien
Dauer: 5 Juni 20178 Juni 2017

Publikationsreihe

Name2017 IEEE Congress on Evolutionary Computation, CEC 2017 - Proceedings

Konferenz

Konferenz2017 IEEE Congress on Evolutionary Computation, CEC 2017
Land/GebietSpanien
OrtDonostia-San Sebastian
Zeitraum05.06.201708.06.2017

Fingerprint

Untersuchen Sie die Forschungsthemen von „A new approach to target region based multiobjective evolutionary algorithms“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren