A Multipole Expansion Method for PDE Constrained Problems

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

Abstract

It is crucial to choose the appropriate numerical method for treating partial differential equations in shape optimization and control problems. This paper introduces a meshless approach derived from the well-known charge simulation method. Instead of a large number of heuristically located monopoles (i.e. charges or sources), the proposed technique relies on more rigorously located poles with multiplicity. A well-conditioned method is devised by applying basis orthogonalization in this multipole expansion. The basis size is determined by a recursive process of orthogonalization in order to achieve the desired accuracy as shown in the numerical examples.

OriginalspracheEnglisch
Titel2022 30th Mediterranean Conference on Control and Automation, MED 2022
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten1105-1110
Seitenumfang6
ISBN (elektronisch)9781665406734
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung30th Mediterranean Conference on Control and Automation, MED 2022 - Athens, Griechenland
Dauer: 28 Juni 20221 Juli 2022

Publikationsreihe

Name2022 30th Mediterranean Conference on Control and Automation, MED 2022

Konferenz

Konferenz30th Mediterranean Conference on Control and Automation, MED 2022
Land/GebietGriechenland
OrtAthens
Zeitraum28.06.202201.07.2022

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Multipole Expansion Method for PDE Constrained Problems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren