A multicriteria generalization of Bayesian global optimization

Michael Emmerich, Kaifeng Yang, André Deutz, Hao Wang, Carlos M. Fonseca

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

54 Zitate (Scopus)

Abstract

This chapter discusses a generalization of the expected improvement used in Bayesian global optimization to the multicriteria optimization domain, where the goal is to find an approximation to the Pareto front. The expected hypervolume improvement (EHVI) measures improvement as the gain in dominated hypervolume relative to a given approximation to the Pareto front. We will review known properties of the EHVI, applications in practice and propose a new exact algorithm for computing EHVI. The new algorithm has asymptotically optimal time complexity O(nlogn). This improves existing computation schemes by a factor of n/logn. It shows that this measure, at least for a small number of objective functions, is as fast as other simpler measures of multicriteria expected improvement that were considered in recent years.

OriginalspracheEnglisch
Seiten (von - bis)229-242
Seitenumfang14
FachzeitschriftSpringer Optimization and Its Applications
Jahrgang107
DOIs
PublikationsstatusVeröffentlicht - 2016

Fingerprint

Untersuchen Sie die Forschungsthemen von „A multicriteria generalization of Bayesian global optimization“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren