A Model-Based Learning Approach for Controlling the Energy Flows of a Residential Household Using Genetic Programming to Perform Symbolic Regression

Kathrin Kefer, Roland Hanghofer, Patrick Kefer, Markus Stöger, Michael Affenzeller, Stephan Winkler, Stefan Wagner, Bernd Hofer

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

In recent years, renewable energy resources have become increasingly important. Due to the fluctuating and changing environment, these energy sources are not permanently available. At certain times, e.g. a photovoltaic (PV) power plant can only generate little or no electricity at all. This is why energy management systems (EMS), which store, use and distribute the available energy as optimally as possible, have been strongly promoted and further developed recently.

OriginalspracheEnglisch
TitelComputer Aided Systems Theory – EUROCAST 2019 - 17th International Conference, Revised Selected Papers
Redakteure/-innenRoberto Moreno-Díaz, Alexis Quesada-Arencibia, Franz Pichler
Herausgeber (Verlag)Springer
Seiten405-412
Seitenumfang8
ISBN (Print)9783030450922
DOIs
PublikationsstatusVeröffentlicht - 2020
Veranstaltung17th International Conference on Computer Aided Systems Theory, EUROCAST 2019 - Las Palmas de Gran Canaria, Spanien
Dauer: 17 Feb. 201922 Feb. 2019

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band12013 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz17th International Conference on Computer Aided Systems Theory, EUROCAST 2019
Land/GebietSpanien
OrtLas Palmas de Gran Canaria
Zeitraum17.02.201922.02.2019

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Model-Based Learning Approach for Controlling the Energy Flows of a Residential Household Using Genetic Programming to Perform Symbolic Regression“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren