A Lower Bound for the Norm of the Minimal Residual Polynomial

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

5 Zitate (Scopus)

Abstract

Let S be a compact infinite set in the complex plane with 0 ∉ S, and let Rn be the minimal residual polynomial on S, i. e., the minimal polynomial of degree at most n on S with respect to the supremum norm provided that Rn(0)=1. For the norm Ln(S) of the minimal residual polynomial, the limit exists. In addition to the well-known and widely referenced inequality Ln(S) ≥ κ(S)n, we derive the sharper inequality Ln(S) ≥ 2κ(S)n/(1+κ(S)2n) in the case that S is the union of a finite number of real intervals. As a consequence, we obtain a slight refinement of the Bernstein-Walsh lemma.

OriginalspracheEnglisch
Seiten (von - bis)425-432
Seitenumfang8
FachzeitschriftConstructive Approximation
Jahrgang33
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - Juni 2011

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Lower Bound for the Norm of the Minimal Residual Polynomial“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren