A Hybrid Cooperative Approach for Symbolic Regression

Bahareh Etaati*, Stefan Wagner, Michael Affenzeller

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

Abstract

In multi-objective symbolic regression, the objective is to improve the model’s accuracy while minimizing its complexity. It results in a Pareto front, including a fair compromise between accuracy and complexity. In this study, we propose a hybrid cooperative genetic programming approach containing the hybridization of NSGA-II and an adaptive weighted multi-population GA, which cooperatively optimize both models’ accuracy and tree length. In the weighted multi-population GA, the weights are assigned adaptively. We also propose a new version of offspring selection to suit the needs of multi-objective symbolic regression. The two algorithms communicate solutions with each other in specific intervals. The proposed algorithm is tested on the Feynman benchmark datasets, and the results are comparable to the NSGA-II in terms of accuracy and models’ tree length.

OriginalspracheEnglisch
TitelComputer Aided Systems Theory - EUROCAST 2024 - 19th International Conference, 2024, Revised Selected Papers
Redakteure/-innenAlexis Quesada-Arencibia, Michael Affenzeller, Roberto Moreno-Díaz
Herausgeber (Verlag)Springer
Seiten53-67
Seitenumfang15
ISBN (Print)9783031829512
DOIs
PublikationsstatusVeröffentlicht - 2025
Veranstaltung19th International Conference on Computer Aided Systems Theory, EUROCAST 2024 - Las Palmas de Canaria, Spanien
Dauer: 25 Feb. 20241 März 2024

Publikationsreihe

NameLecture Notes in Computer Science
Band15172 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz19th International Conference on Computer Aided Systems Theory, EUROCAST 2024
Land/GebietSpanien
OrtLas Palmas de Canaria
Zeitraum25.02.202401.03.2024

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Hybrid Cooperative Approach for Symbolic Regression“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren